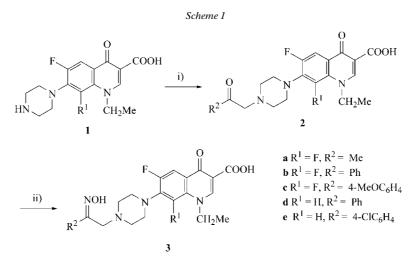
Synthesis, and Antimycobacterial and Cytotoxic Evaluation of Certain Fluoroquinolone Derivatives

by Jia-Yuh Sheu, Yeh-Long Chen, and Cherng-Chyi Tzeng*

School of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, Taiwan (phone: (886)7-3121101 ext 6985; fax. (886)7-3125339; e-mail: tzengch@cc.kmu.edu.tw)

and Shu-Lin Hsu, Kuo-Chang Fang, and Tai-Chi Wang

Department of Environmental Engineering & Health, Tajen Institute of Technology, Pingtong, Taiwan

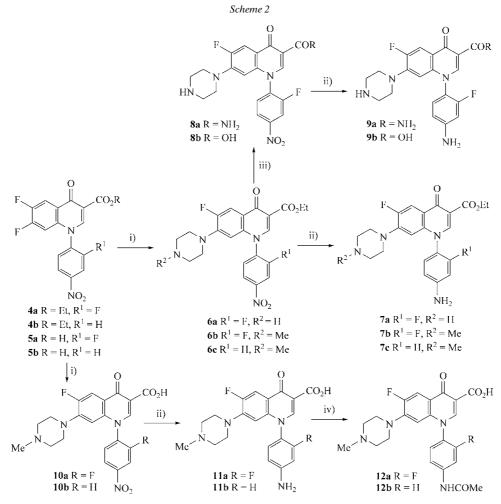

Certain 1-ethyl- and 1-aryl-6-fluoro-1,4-dihydroquinol-4-one derivatives were synthesized and evaluated for antimycobacterial and cytotoxic activities. Preliminary results indicated that, for 1-aryl-6-fluoroquinolones, both 7-(piperazin-1-yl) - and 7-(4-methylpiperazin-1-yl) derivatives, **9b** and **11a**, are able to completely inhibit the growth of *M. tuberculosis* at a concentration of 6.25 µg/ml, while the 7-[4-(2-oxo-2-phenylethyl)piperazin-1-yl] derivative **13** exhibits only 31% growth inhibition at the same concentration. For 1-ethyl-6-fluoroquinolones, both 7-[4-(2-oxopropyl)piperazin-1-yl] - and 7-[4-(2-oxo-2-phenylethyl)piperazin-1-yl]-derivatives, **2a** and **2b**, respectively, show complete inhibition, while their 2-iminoethyl and substituted phenyl counterparts **3a** and **2c** are less active. In addition, the 6,8-difluoro derivative was a more-favorable inhibitor than its 6-fluoro counterpart (**2b** vs. **2d**). These results deserve full attention especially because **2a**, **2b**, **9b**, and **11a** are non-cytotoxic at a concentration of 100 µM. Furthermore, compound **9b** proved to be a potent anti-TB agent with selective index (*SI*) > 40 and an *EC*₉₀ value of 5.75 µg/ml.

Introduction. – The drugs currently used for the treatment of tuberculosis (TB) infection are streptomycin, isoniazid, ethambutol, pyrazinamide, and rifampicin [1]. However, the current TB treatment regimens, although highly effective, are far from ideal. With the optimal combination of available drugs, the duration of treatment required for curing patients cannot be reduced to less than six months. As a result, noncompliance, i.e., patients stopping therapy as soon as an improvement in the symptoms is felt, allows the remaining, more-resistant bacteria to survive and spread. Recently, the incidence of TB infection has been further complicated by an increase in cases that are resistant to conventional drug therapy, especially the emergence of multidrug resistant tuberculosis (MDRTB) [2] [3]. Furthermore, the association of TB and HIV infection is so dramatic that, in some cases, nearly two-thirds of the patients diagnosed with TB are also HIV-1 seropositive [4]. Numerous studies showing that TB may be a cofactor in the progression of HIV has caused an urgent need to search for alternative chemotherapeutics for *Mycobacterium tuberculosis* infection [5-8]. During the past decade, several of the fluoroquinolone antibacterial drugs have been examined as potential chemotherapeutics for *M. tuberculosis* infection because of their favorable pharmacokinetic profiles, such as easy absorbtion after oral administration and ready penetration into mammalian cells [9-14]. These properties are important for the treatment of intracellular pathogens, such as TB [15]. Synthesis of new fluoroquinolones and the evaluation of these agents for antimycobacterial activity has continued,

and a series of SAR studies has been performed with *M. avium*, *M. tuberculosis*, and other mycobacteria [16-20]. However, the structural modification of the fluoroquinolones with respect to their optimum anti-TB activity has not been thoroughly explored.

Over the past few years, we were particularly interested in the synthesis and evaluation of fluoroquinolones for their antibacterial and anticancer activities [21-24]. Since the antibacterial mechanism of these fluoroquinolones is unique and absolutely different from that of the currently used anti-TB drugs, they will become very important drug candidates if proved to be active against the growth of *M. tuberculosis*.

Results and Discussion. – The preparation of (*E*)-1-ethyl-6,8-difluoro-1,4-dihydro-7-{4-[2-(hydroxyimino)propyl]piperazin-1-yl}-4-oxoquinoline-3-carboxylic acid (**3a**) is outlined in *Scheme 1*. 8-Fluoronorfloxacin (**1a**) was treated with NaHCO₃ and chloroacetone to give its *N*-(2-oxopropyl) intermediate **2a**, which, upon treatment with NH₂OH in EtOH, afforded **3a** in 79% overall yield. Synthesis and antibacterial activities of **3b** – **3e** have been reported previously [22][23].



i) NaHCO3, R2COCH2Cl in DMF. ii) NH2OH in EtOH.

The synthetic pathways for preparation of 1-aryl-6-fluoro-1,4-dihydro-7-(piperazin-1-yl)-4-oxoquinoline-3-carboxylic acids 6-12 are described in *Scheme 2*. Reaction of ethyl 6,7-difluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-oxoquinoline-3-carboxylate (**4a**) with piperazine or 1-methylpiperazine in MeCN afforded ethyl 6-fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylate (**6a**) and its 7-(4-methylpiperazin-1-yl) derivative **6b**, respectively. Accordingly, ethyl 6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-1-(4-nitrophenyl)-4-oxoquinoline-3-carboxylate (**6c**) was obtained by the treatment of **4b** with 1-methylpiperazine. Compounds **6a**-**6c** were reduced by catalytic hydrogenation on Pd/C to their corresponding 1-(4-aminophenyl) counterparts **7a**-**7c**. Reaction of **6a** with 28% NH₄OH in a sealed bomb afforded 6-fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-

2482

oxo-7-(piperazin-1-yl)quinoline-3-carboxamide (**8a**), which was reduced by catalytic hydrogenation to give 1-(4-amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxamide (**9a**) in 59% overall yield. Compounds **8b** and **9b** were synthesized according to our previous report [23].

i) Piperazine or 1-methylpiperazine in MeCN. ii) H_2 , Pd/C in CH_2Cl_2 . iii) NH_4OH in a sealed bomb (for **7a** from **5a**); HCl/AcOH 1:4 (for **7b** from **5a**). iv) Ac₂O, pyridine.

1-(4-Amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid (**11a**) was obtained by catalytic hydrogenation of its nitro precursor **10a**, which, in turn, was prepared by the reaction of 6,7-difluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (**5a**) and 1-methylpiperazine. Acetylation of **11a** with Ac₂O afforded 1-[4-(acetylamino)-2-fluorophenyl]-6fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid (**12a**) in 93% yield. Accordingly, compound **12b** was synthesized from **5b**. Compound **13** was prepared from **5a** according to our previous report [23].

The anti-TB activity of fluoroquinolones is summarized in *Table 1*. Compound **2a** was found to be a very potent inhibitor, being able to inhibit 99% growth of *M. tuberculosis* at a concentration of 6.25 µg/ml. Of the 6-fluoro derivatives, compound **2d** exhibited 53% inhibition of the growth of *M. tuberculosis* and was more active than its 4-Cl and the oxime congeners (**2d** vs. **2e** and **2d** vs. **3d**). The same order has been observed for 6,8-difluoro derivatives, in which **2a** is a more-potent anti-TB agent than its oxime counterpart **3a**, and **2b** was more potent than its 4-MeO derivative **2c**. Compound **2b** was able to completely inhibit the growth of *M. tuberculosis*, while its 6-F counterpart **2d** showed only marginal inhibitory activity, indicating that the 6,8-difluoro derivative was a more-favorable inhibitor than its 6-F counterpart. The enhancement of anti-TB activity by 8-F group could be attributed to the higher lipophilicity, which facilitated its penetration into mammalian cells.

Table 1. Inhibitory Activity of Fluoroquinolones against M. tuberculosis at a Concentration of 6.25 µg/ml

R^{1} X R^{2}							
Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	Х	Inhibition [%]		
2a	MeCOCH ₂	MeCH ₂	OH	F	99		
2b	PhCOCH ₂	MeCH ₂	OH	F	100		
2c	4-MeOC ₆ H ₄ COCH ₂	MeCH ₂	OH	F	29		
2d	PhCOCH ₂	MeCH ₂	OH	Н	53		
2e	4-ClC ₆ H ₄ CO	MeCH ₂	OH	Н	24		
3a	$MeC(=NOH)CH_2$	MeCH ₂	OH	F	34		
3d	$PhC(=NOH)CH_2$	MeCH ₂	OH	Н	28		
7a	Н	$4-NH_2, 2F-C_6H_3$	EtO	Н	13		
7b	Me	$4-NH_2, 2F-C_6H_3$	EtO	Н	0		
7c	Me	$4-NH_2C_6H_4$	EtO	Н	0		
8a	Н	2-F,4-NO ₂ -C ₆ H ₃	NH_2	Н	0		
8b	Н	2-F,4-NO ₂ -C ₆ H ₃	OH	Н	37		
9a	Н	$4-NH_2, 2-F-C_6H_3$	NH_2	Н	1		
9b	Н	$4-NH_2, 2-F-C_6H_3$	OH	Н	100		
11a	Me	$4-NH_2, 2-F-C_6H_3$	OH	Н	100		
11b	Me	$4-NH_2C_6H_4$	OH	Н	84		
12a	Me	4-(NHAC),2-F-C ₆ H ₃	OH	Н	18		
12b	Me	$4-(NHAC)-C_6H_4$	OH	Н	15		
13	$4\text{-}MeOC_{6}H_{4}COCH_{2}$	$4-NH_2, 2-F-C_6H_3$	OH	Н	31		

The esters 7a - 7c and amides 8a and 9a were devoid of anti-TB activity. Compound **11b** exhibited good inhibitory activity (84% inhibition), while its 4-amino-2-fluorophenyl derivative **11a** further improved the potency. Both **9b** and **11a** were able to completely inhibit the growth of *M. tuberculosis*, indicating that the 7-(piperazin-1-yl) can be substituted with a Me group. However, a [(4-methoxyphenyl)carbonyl]methyl

2484

substituent (instead of Me; *i.e.*, **13**) drastically decreased potency. Acetylation of amino group led to decreased anti-TB activity (**11a** *vs.* **12a** and **11b** *vs.* **12b**).

Compounds **2a**, **2b**, and **9b**, which demonstrated at least 90% inhibition in the primary screen, were retested at lower concentrations against *M. tuberculosis* $H_{37}Rv$ to determine the actual minimum inhibitory concentration (*MIC*) and the cytotoxicity (*IC*₅₀) [25] (*Table 2*). Among them, **9b**, which possessed the selective index (*SI*, *IC*₅₀/*MIC*) > 40, was then tested for killing of *M. tuberculosis* Erdman (ATCC 35801) in monolayers of mouse bone marrow macrophages [26] at four-fold concentrations equivalent to 0.25, 1, 4, and 16 × the *MIC*. The results indicated **9b** to be a potent anti-TB fluoroquinolone with an *EC*₉₀ value of 5.75 µg/ml (*EC*₉₀ > 16 × *MIC* are considered inactive).

Compound	MIC [µg/ml] ^a)	$IC_{50} [\mu g/ml]^{b})$	SI ^c)	EC_{90} [µg/ml) ^d)
2a	3.13	>10	> 3.19	n.d. ^e)
2b	3.13	> 10	> 3.19	n.d.
9b	1.56	> 62.5	> 40.06	5.75

Table 2. Anti-TB Activity of 2a, 2b, and 9b

^a) Minimium inhibitory concentration (*MIC*) against *M. tuberculosis* $H_{37}Rv$. ^b) Cytotoxicity (*IC*₅₀) in VERO cells at concentrations of 62.5 µg/ml or 10 × the *MIC* for *M. tuberculosis* $H_{37}Rv$. ^c) Selective index (*SI*, *IC*₅₀) *MIC*). ^d) Lowest concentration effecting a 90% reduction in colony forming units at 7 days compared to drug-free controls. ^c) Not determined.

All compounds were evaluated *in vitro* against a three-cell-line panel consisting of MCF 7 (Breast), NCI-H460 (Lung), and SF-268 (CNS). In this protocol, each cell line is inoculated and preincubated on a microtiter plate. Test agents are then added at a single concentration (100 μ M), and the culture was incubated for 48 h. End-point determinations are made with sulforhodamine B, a protein-binding dye. Results for each test agent are reported as the percent of growth of the treated cells when compared to the untreated control cells. Compounds, which reduced the growth of any one of the cell lines to 32% or less (negative numbers indicate cell kill), are passed on for evaluation in the full panel of 60 cell lines over a 5-log dose range [27]. Results from *Table 3* indicated that all of them, with the exception of compounds 2c-2e, 3d, and 13, whose mean GI_{50} value ranged from 22 to 83 μ M, are inactive.

Conclusions. – A number of fluoroquinolone derivatives were synthesized, and evaluated for antimycobacterial and cytotoxic activities. Preliminary results are 1) for 1-ethyl 6,8-difluoroquinolones, 7-[4-(2-oxopropyl)piperazin-1-yl] and 7-[4-(2-oxo-2-phenylethyl)piperazin-1-yl] derivatives, **2a** and **2b**, respectively, are active anti-TB agents, while their 2-iminoethyl and substituted phenyl counterparts are inactive. 2) For 1-aryl-6-fluoroquinolones, both 7-(piperazin-1-yl) and 7-(4-methylpiperazin-1-yl) derivatives, **9b** and **11a**, respectively, are active against the growth of *M. tuberculosis*, while the 7-[4-(2-oxo-2-phenylethyl)piperazin-1-yl] counterpart, **13**, becomes inactive. These results deserve full attention, especially because **2a**, **2b**, **9b**, and **11a** are non-cytotoxic. Furthermore, compound **9b** proved to be a potent anti-TB agent with the selective index (*SI*) > 40 and an *EC*₉₀ value of 5.75 µg/ml.

Compound	Growth Percentages			Mean <i>GI</i> ₅₀ [µм] ^a)
	NCI-H460 (Lung)	MCF7 (Breast)	SF-268 (CNS)	
2a	81	66	72	Inactive
2b	50	37	23	> 100
2c	84	69	-2	83.0
2d	93	91	6	69.9
2e	94	89	22	72.0
3d	9	25	3	29.4
6a	92	74	76	Inactive
6b	101	114	120	Inactive
6c	104	116	115	Inactive
7a	96	64	109	Inactive
7b	111	94	78	Inactive
9a	96	105	89	Inactive
9b	116	89	86	Inactive
11a	95	96	106	Inactive
11b	100	109	118	Inactive
12a	85	90	84	Inactive
12b	96	108	121	Inactive
13	4	11	29	22.1

Experimental Part

General. M.p.: Electrothermal IA9100 digital melting-point apparatus; uncorrected. TLC: silica gel 60 F-254 plates from EM Laboratories, Inc.; detection by UV light (254 nm). NMR (¹H and ¹³C) spectra; Varian Unity-400 spectrometer or Varian Gemini-200 spectrometer, chemical shifts δ in ppm with Me₄Si as an internal standard (=0 ppm), coupling constants J in Hz. Elemental analyses were carried out on a Heraeus CHN-O-Rapid elemental analyzer, and results were within $\pm 0.4\%$ of calc. values.

1-Ethyl-6,8-difluoro-1,4-dihydro-4-oxo-7-[4-(2-oxopropyl)piperazin-1-yl]quinoline-3-carboxylic acid (2a). A mixture of 8-fluoronorfloxacin (0.5 g, 1.48 mmol), KHCO₃ (0.15 g, 1.48 mmol), KI (0.08 g, 0.5 mmol), and chloroacetone (0.19 g, 2 mmol) in DMF (40 ml) was stirred at r.t. for 24 h, poured into ice-water (50 ml), and filtered to give a solid, which was washed with H₂O, crystallized from EtOH/CH₂Cl₂ 10:1 to give 2a (0.49 g, 85%). M.p. 198° (dec.). ¹H-NMR (400 MHz, DMSO): 1.44 (t, J = 6.0, Me); 2.11 (s, MeCO); 2.58, 3.28 (2 br. s, 8 H-(piperazine)); 3.15 (s, NCH₂CO); 4.59 (m, N(1)CH₂); 7.90 (d, J = 11.6, H–C(5)); 8.92 (s, H–C(2)); 14.90 (br. s, COOH). Anal. calc. for C₁₉H₂₁F₂N₃O₄·0.2 H₂O: C 57.34, H 5.42, N 10.56; found: C 57.48, H 5.37, N 10.52.

1-Ethyl-6,8-difluoro-1,4-dihydro-7-{(E)-*4-[2-(hydroxyimino)propyl]piperazin-1yl]-4-oxoquinoline-3-carb-oxylic Acid* (**3a**). To a suspension of **2a** (0.39 g, 1 mmol) in MeOH (20 ml) was added a soln. of NH₂OH · HCl (0.14 g, 2 mmol) and NaHCO₃ (0.17 g, 2 mmol) in H₂O (2 ml). The mixture was stirred for at r.t. 4 h, H₂O (20 ml) and CH₂Cl₂ (50 ml) were then added. The org. phase was washed successively with H₂O and brine, dried (Na₂SO₄), and evaporated to give a residual solid, which was purified by flash column chromatography (FC) (silica gel; CH₂Cl₂/MeOH 10 : 1) and crystallized from CH₂Cl₂/MeOH 10 : 1 to give **3a** (0.38 g, 93%). M.p. 231° (dec.). ¹H-NMR (400 MHz, DMSO): 1.44 (*t*, *J* = 6.6, Me); 1.81 (*s*, MeC=N); 2.52, 3.36 (2 br. *s*, 8 H (piperazine)); 3.02 (*s*, NCH₂C=N); 4.58 (*m*, N(1)CH₂); 7.84 (*d*, *J* = 13.2, H–C(5)); 8.91 (*s*, H–C(2)); 10.61 (*s*, NOH); 15.30 (br. *s*, COOH). Anal. calc. for C₁₉H₂₂F₂N₄O₄: C 55.88, H 5.43, N 13.72; found: C 55.69, H 5.23, N 13.57.

Ethyl 6-Fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylate (**6a**). A mixture of **4a** (2.68 g, 6.83 mmol) and piperazine (1.72 g, 20 mmol) in MeCN (100 ml) was refluxed under N₂ for 5 h (TLC monitoring). The solvent was evaporated to give a residual solid, which was purified by FC (CH₂Cl₂/MeOH 10:1) and crystallized from EtOH to afford **6a** (2.66 g, 85%). M.p. 288° (dec.). ¹H-NMR (400 MHz, DMSO): 1.24 (t, J = 7.2, Me); 2.77, 2.91 (2 br. s, 8 H (piperazine)); 4.19 (q, J = 7.2, CH₂O); 6.24 (d, J = 6.0, H–C(8)); 7.80 (d, J = 13.2, H–C(5)); 8.18 (dd, J = 8.8, 8.0, H–C(6')); 8.35 (ddd, J = 8.8, 2.8, 2.0, 1.24 (d, J = 8.8, 2.8, 2.8, 2.0, 1.24 (d, J = 1.24 (d) (d, J = 1.24 (d) (d, J = 1.24 (d) (d) (d = 1.24 (d) (d) (d) (d = 1.24 (d) (d

H-C(5'); 8.51 (*dd*, J = 9.6, 2.8, H-C(3')); 8.54 (*s*, H-C(2)). Anal. calc. for $C_{22}H_{20}F_2N_4O_5 \cdot 0.2 H_2O$: C 57.02, H 4.45, N 12.13; found: C 57.09, H 4.46, N 11.96.

Ethyl 6-Fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylate (**6b**). Compound **6b** was obtained from **4a** and 1-methylpiperazine as described for **6a**. FC (CH₂Cl₂/MeOH 20:1): 63% yield. M.p. 184–185°. ¹H-NMR (200 MHz, DMSO): 1.26 (t, J = 7.2, Me); 2.21 (s, MeN); 2.44, 3.03 (2 br. s, 8 H (piperazine)); 4.21 (q, J = 7.2, CH₂O); 6.28 (d, J = 7.0, H–C(8)); 7.83 (d, J = 13.4, H–C(5)); 8.18 (dd, J = 8.4, 8.0, H–C(6')); 8.36 (dd, J = 8.8, 2.0, H–C(5')); 8.53 (m, H–C(2)). Anal. calc. for C₂₃H₂₂F₂N₄O₅·4.0 H₂O: C 50.73, H 5.55, N 10.29; found: C 50.63, H 5.29, N 10.54.

Ethyl 6-*Fluoro*-1,4-*dihydro*-7-(4-*methylpiperazin*-1-*yl*)-1-(4-*nitrophenyl*)-4-oxoquinoline-3-carboxylate (**6c**). Compound **6c** was obtained from **4b** and 1-methylpiperazine as described for **6a**. FC (CH₂Cl₂/MeOH 20:1): 90% yield. M.p. 231–233°. ¹H-NMR (200 MHz, DMSO): 1.24 (t, J = 7.2, Me); 2.17 (s, MeN); 2.38, 2.96 (2 br. s, 8 H (piperazine)); 4.20 (q, J = 7.2, CH₂O); 6.33 (d, J = 7.2, H–C(8)); 7.82 (d, J = 13.6, H–C(5)); 7.97 (m, H–C(2'), H–C(6')); 8.48 (m, H–C(5'), H–C(5'), H–C(2)). Anal. calc. for C₂₃H₂₃FN₄O₅·0.5 H₂O: C 59.61, H 5.22, N 12.09; found: C 59.25, H 5.23, N 11.91.

Ethyl 1-(4-Amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylate (7a). A mixture of 6a (3.40 g, 7.42 mmol) and 5% Pd/C (0.50 g) in CH₂Cl₂/EtOH 3:1 (100 ml) was stirred under H₂ for 24 h (TLC monitoring). The resulting mixture was filtered, and the soln. was evaporated under reduced pressure. The residual solid was purified by FC (CH₂Cl₂/MeOH 30:1) and crystallized from EtOH to give 7a (2.45 g, 77%). M.p. 260–261°. ¹H-NMR (400 MHz, DMSO): 1.26 (*t*, *J* = 7.2, Me); 3.40 (br. *s*, 8 H (piperazine)); 4.20 (*q*, *J* = 7.2, CH₂O); 6.04 (br. *s*, NH₂); 6.36 (*d*, *J* = 7.2, H–C(8)); 6.59 (*m*, H–C(3'), H–C(5')); 7.34 (*dd*, *J* = 9.2, 8.4, H–C(6')); 7.85 (*d*, *J* = 13.2, H–C(5)); 8.37 (*s*, H–C(2)). Anal. calc. for C₂₂H₂₂F₂N₄O₃·2.5 H₂O: C 55.80, H 5.75, N 11.83; found: C 55.57, H 5.74, N 11.60.

Ethyl 1-(4-Amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylate (**7b**). Compound **7b** was obtained from **6b** as described for **7a**. FC (CH₂Cl₂/MeOH 20:1): 47% yield. M.p. 132–133°. ¹H-NMR (200 MHz, DMSO): 1.25 (t, J = 7.2, Me); 2.18 (s, MeN); 2.42, 2.99 (2 br. s, 8 H (piperazine)); 4.18 (q, J = 7.2, CH₂O); 5.99 (br. s, NH₂); 6.33 (d, J = 7.2, H–C(8)); 6.57 (m, H–C(3'), H–C(5')); 7.32 (dd, J = 9.2, 8.4, H–C(6')); 7.79 (d, J = 13.6, H–C(5)); 8.32 (s, H–C(2)). Anal. calc. for C₂₃H₂₄F₂N₄O₃·0.8 H₂O: C 60.46, H 5.65, N 12.26; found: C 60.68, H 5.68, N 11.98.

Ethyl 1-(4-Aminophenyl)-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylate (**7c**). Compound **7c** was obtained from **6c** as described for **7a**. FC (CH₂Cl₂/MeOH 30:1): 60% yield. M.p. 227–229°. ¹H-NMR (400 MHz, DMSO): 1.25 (t, J = 7.2, Me); 2.38 (s, MeN); 2.71, 3.06 (2 br. s, 8 H (piperazine)); 4.19 (q, J = 7.2, CH₂O); 5.65 (br. s, NH₂); 6.43 (d, J = 7.6, H–C(8)); 6.74 (m, 2 H–C(2′, 6′)); 7.73 (m, 2 H–C(5)); 8.30 (s, H–C(2)). Anal. calc. for C₂₃H₂₅FN₄O₃·2.0 H₂O: C 59.99, H 6.35, N 12.17; found: C 60.23, H 6.05, N 12.03.

6-*Fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxamide* (**8a**). A mixture of the **6a** (2.18 g, 4.75 mmol) and 28% NH₄OH (40 ml) in MeOH (10 ml) was heated in a steel bomb at 125° for 5 h. The mixture was evaporated to give a residual solid, which was purified by FC (CH₂Cl₂/MeOH 20:1) and crystallized from EtOH to afford **8a** (2.66 g, 76%). M.p. 259–260° (dec.). ¹H-NMR (200 MHz, DMSO): 2.78, 2.94 (2 br. *s*, 8 H (piperazine)); 6.31 (*dd*, *J* = 7.0, 1.4, H–C(8)); 7.64 (*d*, *J* = 4.4, CONH); 7.92 (*d*, *J* = 13.6, H–C(5)); 8.17 (*dd*, *J* = 8.8, 7.6, H–C(6')); 8.37 (*ddd*, *J* = 8.8, 2.4, 1.0, H–C(5')); 8.55 (*dd*, *J* = 9.8, 2.4, H–C(3')); 8.65 (*s*, H–C(2)); 9.13 (*d*, *J* = 4.4, CONH). Anal. calc. for C₂₀H₁₇F₂N₅O₄ · 0.8 H₂O: C 54.13, H 4.22, N 15.78; found: C 54.44, H 4.08, N 15.41.

1-(4-Amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxamide (9a). Compound 9a was obtained from 8a as described for 7a: 78% yield. M.p. 276–278°. ¹H-NMR (400 MHz, DMSO): 2.80, 2.92 (2 br. *s*, 8 H (piperazine)); 6.01 (br. *s*, NH₂); 6.38 (*d*, *J* = 6.8, H–C(8)); 6.59 (*m*, H–C(3'), H–C(5')); 7.34 (*dd*, *J* = 9.2, 8.4, H–C(6')); 7.57 (*d*, *J* = 4.4, CONH); 7.88 (*d*, *J* = 13.2, H–C(5)); 8.44 (*s*, H–C(2)); 9.20 (*d*, *J* = 4.4, CONH). Anal. calc. for $C_{21}H_{21}F_2N_5O_2 \cdot 1.0 H_2O$: C 58.46, H 5.37, N 16.23; found: C 58.38, H 5.11, N 16.05.

6-*Fluoro-1-(2-fluoro-4-nitrophenyl)-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic Acid* (**10a**). Compound **10a** was obtained from **5a** and 1-methylpiperazine as described for **6a**. FC (CH₂Cl₂/MeOH 3 : 1): 91% yield. M.p. 288–289°. ¹H-NMR (400 MHz, DMSO): 2.18 (*s*, MeN); 2.40, 3.09 (2 br. *s*, 8 H (piperazine)); 6.37 (*d*, *J* = 7.2, H–C(8)); 8.00 (*d*, *J* = 13.2, H–C(5)); 8.18 (*dd*, *J* = 8.8, 8.0, H–C(6')); 8.39 (*d*, *J* = 8.0, H–C(5')); 8.57 (*dd*, *J* = 8.8, 2.4, H–C(3')); 8.92 (*s*, H–C(2)); 14.80 (br. *s*, COOH). Anal. calc. for C₂₁H₁₈F₂N₄O₅: C 56.76, H 4.08, N 12.61; found: C 56.74, H 4.08, N 12.61.

6-Fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-1-(4-nitrophenyl)-4-oxoquinoline-3-carboxylic Acid (10b). Compound 10b was obtained from 5b and 1-methylpiperazine as described for 6a. FC (CH₂Cl₂/MeOH

2:1): 72% yield. M.p. 297–298°. ¹H-NMR (400 MHz, DMSO/CF₃COOH): 2.88 (*s*, MeN); 3.14, 3.59 (2 br. *s*, 8 H (piperazine)); 6.53 (*d*, J = 7.2, H–C(8)); 8.06 (*m*, H–C(5), H–C(2'), H–C(6')); 8.54 (*m*, H–C(3'), H–(5')); 8.77 (*s*, H–C(2)). Anal. calc. for C₂₃H₂₂F₂N₄O₄·0.3 H₂O: C 58.41, H 4.57, N 12.98; found: C 58.46, H 4.55, N 13.12.

1-(4-Amino-2-fluorophenyl)-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic Acid (**11a**). Compound **11a** was obtained from **10a** as described for **7a**. FC (CH₂Cl₂/MeOH 10:1): 77% yield. M.p. 278–280°. ¹H-NMR (400 MHz, DMSO): 2.18 (*s*, MeN); 2.42, 3.07 (2 br. *s*, 8 H (piperazine)); 6.03 (br. *s*, NH₂); 6.43 (*d*, J = 7.2, H–C(8)); 6.58 (*m*, H–C(3'), H–C(5')); 7.34 (*dd*, J = 8.8, 8.4, H–C(6')); 7.94 (*d*, J = 13.2, H–C(5)); 8.59 (*s*, H–C(2)). Anal. calc. for C₂₁H₂₀F₂N₄O₃: C 60.86, H 4.86, N 13.52; found: C 60.83, H 5.07, N 13.27.

1-(4-Aminophenyl)-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic Acid (11b). Compound 11b was obtained from 10b as described for 7a. FC (CH₂Cl₂/MeOH 20:1): 51% yield. M.p. 268–269°. ¹H-NMR (200 MHz, DMSO): 2.19 (*s*, MeN); 2.44, 3.06 (2 br. *s*, 8 H (piperazine)); 5.69 (br. *s*, NH₂); 6.55 (*d*, J = 7.0, H–C(8)); 6.76 (*m*, H–C(3'), H–C(5')), 7.27 (*m*, H–C(2'), H–C(6')); 8.50 (*s*, H–C(2)). Anal. calc. for C₂₁H₂₁FN₄O₃: C 63.63, H 5.34, N 14.13; found: C 63.41, H 5.40, N 13.94.

1-[4-(Acetylamino)-2-fluorophenyl]-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic Acid (**12a**). A mixture of **11a** (0.23 g, 0.55 mmol), Ac₂O (30 ml), and pyridine (30 ml) was stirred at r.t. for 24 h. The resulting mixture was concentrated under reduced pressure, and then CH₂Cl₂ (100 ml) was added, and the mixture was washed with H₂O (3×80 ml), dried (Na₂SO₄), and evaporated. The residual solid was purified by FC (CH₂Cl₂/MeOH 50:1) to give **12a** (0.23 g, 93%). M.p. 246–247°. ¹H-NMR (200 MHz, DMSO): 2.14 (*s*, MeCO); 2.18 (*s*, MeN); 2.42, 3.08 (2 br. *s*, 8 H (piperazine)); 6.38 (*d*, *J* = 7.0, H–C(8)); 7.53 (*dd*, *J* = 8.8, 1.4, H–C(5')); 7.74 (*dd*, *J* = 8.8, 8.4, H–C(6')); 7.95 (*m*, H–C(3'), H–C(5)); 8.75 (*s*, H–C(2)); 10.54 (br. *s*, CONH). Anal. calc. for C₂₃H₂₂F₂N₄O₄·0.5 H₂O: C 57.14, H 5.18, N 10.66; found: C 56.82, H 5.33, N 10.85.

1-[4-(Acetylamino)phenyl]-6-fluoro-1,4-dihydro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic Acid (12b). Compound 12b was obtained from 11b as described for 12a. FC (CH₂Cl₂/MeOH 50:1): 71% yield. M.p. 287–288°. ¹H-NMR (200 MHz, DMSO): 2.12 (*s*, MeCO); 2.19 (*s*, MeN); 2.43, 3.06 (2 br. *s*, 8 H (piperazine)); 6.46 (*d*, J = 7.4, H–C(8)); 7.61 (*m*, H–C(2'), H–C(6')); 7.86 (*m*, H–C(3'), H–C(5')); 7.96 (*d*, J = 13.4, H–C(5)); 8.58 (*s*, H–C(2)); 10.35 (br. *s*, CONH). Anal. calc. for C₂₃H₂₂FN₄O₄·AcOH·0.2 H₂O: C 59.81, H 5.51, N 11.16; found: C 59.73, H 5.59, N 11.09.

Antimycobacterium Activity. Primary screening is conducted at 6.25 µg/ml against Mycobacterium tuberculosis H₃₇Rv (ATCC 27294) in BACTEC 12B medium with a broth microdilution assay, the Microplate Alamar Blue Assay (MABA) [25]. Compounds exhibiting fluorescence are tested in the BACTEC 460 radiometric system [25]. Compounds demonstrating at least 90% inhibition in the primary screen are retested at lower concentrations against *M. tuberculosis* H₃₇Rv to determine the actual minimum inhibitory concentration (*MIC*) with MABA. The *MIC* is defined as the lowest concentration effecting a reduction in fluorescence of 90% relative to controls. Concurrent with the determination of *MICs*, compounds are tested for cytotoxicity (IC_{50}) in VERO cells at concentrations of 62.5 µg/ml or 10 × the MIC for *M. tuberculosis* H₃₇Rv. After 72-h exposure, viability is assessed on the basis of cellular conversion of MTT to a formazan product with the *Promega Cell Titer 96 Nonradioactive Cell Proliferation Assay*. Compounds for which the selective index (*SI*, IC_{50}/MIC) > 10 will have *in vitro* activity confirmed in the BACTEC 460 at 6.25 µg/ml. Compounds are then tested for killing of *M. tuberculosis* Erdman (ATCC 35801) in monolayers of mouse bone marrow macrophages [26] (EC_{90} ; lowest concentration effecting a 90% reduction in colony forming units at seven days compared to drug-free controls) at four-fold concentrations equivalent to 0.25, 1, 4, and 16 × the MIC. Compounds with $EC_{90} > 16 \times$ MIC are considered inactive in the model.

Financial support of this work by the National Science Council of the Republic of China is gratefully acknowledged. Antimycobacterial data were provided by the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) through a research and development contract with the U.S. National Institute of Allergy and Infectious Diseases. We also thank U.S. National Cancer Institute (NCI) for the anticancer screenings and the National Center for High-Performance Computing of the Republic of China for providing computer resources and chemical database services.

Helvetica Chimica Acta - Vol. 86 (2003)

REFERENCES

- [1] S. Houston, A. Fanning, Drugs 1994, 48, 689.
- [2] R. F. Jacobs, Clin. Infec. Dis. 1994, 19, 1.
- [3] A. C. Weltman, D. N. Rose, Arch. Intern. Med. 1994, 154, 2161.
- [4] D. Alland, G. E. Kalkut, A. R. Moss, R. A. McAdam, J. A. Hahn, W. Bosworth, E. Drucker, B. R. Bloom, New Engl. J. Med. 1994, 330, 1710.
- [5] R. S. Wallis, M. Vjecha, M. Amir-Tahmasseb, A. Okwera, F. Byekwaso, S. Nyole, S. Kabengera, R. D. Mugerwa, J. J. Eliner, J. Infec. Dis. 1993, 167, 43.
- [6] A. K. Bakkestuen, L. L. Gundersen, G. Langli, F. Liu, J. M. J. Nolsoe, *Bioorg. Med. Chem. Lett.* 2000, 10, 1207.
- [7] Y. M. Lin, M. T. Flavin, C. S. Cassidy, A. Mar, F. C. Chen, Bioorg. Med. Chem. Lett. 2001, 11, 2101.
- [8] Y. M. Lin, Y. Zhou, M. T. Flavin, L. M. Zhou, W. Nie, F. C. Chen, Bioorg. Med. Chem. 2002, 10, 2795.
- [9] D. C. Leysen, A. Haemers, S. R. Pattyn, Antimicrob. Agents Chemother. 1989, 33, 1.
- [10] A. Haemers, D. C. Leysen, W. Bollaert, M. Zhang, S. R. Pattyn, Antimicrob. Agents Chemother. 1990, 34, 496.
- [11] J. A. Garcia-Rodriguez, A. C. Gomez Garcia, J. Antimicrob. Chemother. 1993, 32, 797.
- [12] T. E. Renau, J. P. Sanchez, M. A. Shapiro, J. A. Dever, S. J. Gracheck, J. M. Domagala, J. Med. Chem. 1995, 38, 2974.
- [13] T. E. Renau, J. P. Sanchez, J. W. Gage, J. A. Dever, M. A. Shapiro, S. J. Gracheck, J. M. Domagala, J. Med. Chem. 1996, 39, 729.
- [14] S. E. Berning, Drugs 2001, 61, 9.
- [15] M. Neuman, Int. J. Clin. Pharmcol. Res. 1987, 7, 173.
- [16] B. Y. Zhao, R. Pine, J. Domagala, K. Drlica, Antimicrob. Agents Chemother. 1999, 43, 661.
- [17] T. E. Renau, J. W. Gage, J. A. Dever, G. E. Roland, E. T. Joannides, M. A. Shapiro, J. P. Sanchez, S. J. Gracheck, J. M. Domagala, M. R. Jacobs, R. C. Reynolds, *Antimicrob. Agents Chemother.* 1996, 40, 2363.
 [18] G. Klopman, D. Fercu, T. E. Renau, M. R. Jacobs, *Antimicrob. Agents Chemother.* 1996, 40, 2637.
- [19] O. Riofman, D. Fereu, F. E. Rehau, M. R. Jacobs, *Anumetrol. Agents Chemomer. 1996*, 49, 7 [19]
 M. R. Jacobs, Activity of Quinolones Against Mycobacteria, *Drugs*, 1999, 58 (Suppl. 2), 19.
- [20] C. C. Tzeng, Y. L. Chen, *Chin. Pharm. J.* **2002**, *54*, 229.
- [21] J. Y. Sheu, Y. L. Chen, K. C. Fang, T. C. Wang, C. F. Peng, C. C. Tzeng, J. Heterocyclic Chem. 1998, 35, 955.
- [22] K. C. Fang, Y. L. Chen, J. Y. Sheu, T. C. Wang, C. C. Tzeng, J. Med. Chem. 2000, 43, 3809.
- [23] Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu, C. C. Tzeng, J. Med. Chem. 2001, 44, 2374.
- [24] S. L. Hsu, Y. L. Chen, C. C. Tzeng, K. C. Fang, J. Y. Sheu, Helv. Chim. Acta 2001, 84, 874.
- [25] L. Collins, S. G. Franzblau, Antimicrob. Agents Chemother. 1997, 41, 1004.
- [26] P. S. Skinner, S. K. Furney, M. R. Jacobs, G. Klopman, J. J. Ellner, I. M. Orme, Antimicrob. Agents Chemother. 1994, 38, 2557.
- [27] A. Monks, D. Scuderio, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langlay, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, M. Boyd, J. Natl. Cancer Inst. 1991, 83, 757.

Received March 24, 2003